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One of the important aspects of supply chain management is finding ways to circumvent the

negative effects of demand and supply uncertainty. The uncertainty of future supply can be

lowered, if a supply chain member is able to obtain advance capacity information (ACI) on

future supply/production capacity availability from its supplier. We address a periodic-review

inventory system under stochastic demand and stochastic limited supply, for which ACI is

available. We show that the optimal ordering policy is a state-dependent base stock policy

characterized by a base stock level, which is a function of ACI. We establish a link to advance

demand information (ADI) inventory research stream by developing a capacitated inventory

system with ADI, and showing that the model is closely related to the proposed ACI model. We

perform a numerical analysis to quantify the value of ACI and obtain useful managerial insights

from the study of the specific problem instances.
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1. Introduction

Foreknowledge of future supply availability is useful in managing an inventory system. Antic-

ipating possible future supply shortages is beneficial to make timely ordering decisions, which

results in either building up stock to prevent future stockouts, or reducing the stock in the

case the supply conditions in the future might be favorable. Thus, system costs can be reduced

by carrying less safety stock while still achieving the same level of performance. These ben-

efits should encourage the supply chain parties to formalize their cooperation to enable the

necessary information exchange. We can argue that extra information is always beneficial, but

further thought has to be put into investigating in which situations the benefits of information

exchange are substantial and when it is only marginally useful. While in the first case it is likely

that the benefits will outweigh the cost related to adopting the information sharing system, in

the latter these costs are not justified. The need to establish long-term cooperation enabling

the information exchange is particularly strongly motivated by the recent increasing move to

outsource production and other activities to contract manufacturers. To minimize the risk of

contract manufacturing agreements failing to live up to expectations, companies put effort into

managing the relationship with their vendors. The goal is that vendor tailors his services to

each customer’s specific needs, and provide accurate lead times and delivery dates. To do so, he

is willing to share lead time and capacity information with his customers.

In this paper, we study the benefits of obtaining advance capacity information (ACI) about

future uncertain supply capacity. The scope is on a single member of a supply chain, where the

generality of the problem is such that this member can be either a manufacturer (production

company), which itself produces the product, as well as a distributer or a retailer, which raises

its inventory position by placing orders to its predecessor in the supply chain. These benefits

are assessed based on the comparison between the case where a supply chain member, for

instance a retailer, is able to obtain ACI from its supplier, and a base case of no information.

We characterize a traditional supply chain as a supply chain where ACI is not shared. Due

to stochastic supply conditions the retailer is uncertain about the actual order size that will

be delivered. This uncertainty can be due to the changing availability of supply delegated to

the particular retailer by its supplier and/or due to overall product unavailability at certain

times. In a production setting the capacity is determined by productive resources, such as

machinery or workforce. The ability to produce a product in desired quantities strongly depends

on the availability of these resources. Stochastic nature of capacity changes may be due to

variations in the workforce (e.g. holiday leaves), unavailability of machinery due to short-term

planned maintenance or due to multiple products sharing the total capacity. It is reasonable
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to assume that some of these variations can be foreseen. At least in a near future the supplier

can be certain about the extent of the capacity that he can delegate to a particular retailer.

Similarly, in a production setting a short-term production plan is fixed and the uncertainty in the

number of the available workforce is lower in a near future (workers report their holiday plans in

advance). Since the supplier or manufacturer has insight into future capacity availability, he can

communicate ACI to the retailer (Figure 1), and thus help her to reduce the supply uncertainty

and consequently lower the inventory cost.

Figure 1 (a) Traditional supply chain and (b) Supply chain with ACI sharing.

To build the foundation for our work, we proceed with a brief review of the relevant literature.

Although the uncapacitated problems form a foundation in the stochastic inventory control

research field, we are interested in inventory models that simultaneously tackle the capacity that

may limit the order size or the amount of products that can be produced. These models not

only recognize that the supply chain’s demand side is facing uncertain market conditions, but

also look at the risks of limited or even uncertain supply conditions. The researchers revisited

the early stochastic demand models and extended them to incorporate the uncertainty on the

supply side. As we proceed with the literature review on capacitated inventory problems, it

becomes clear that the base stock policy characterizes an optimal policy for several different

capacitated problems. The sense of a base stock policy is different in the resource constrained

case than in the uncapacitated case. In the uncapacitated case, the base stock level has a clear

interpretation, it is the inventory position to order/produce-up-to. In the capacitated case,

however, it only represents a target that may or may not be achieved. If the capacity limit

in a certain period is known, there is no use in ordering/producing above that level, thus, we

are talking about a modified base stock policy. Federgruen and Zipkin (1986a,b) first address

the fixed capacity constraint for stationary inventory problem and prove the optimality of the
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modified base stock policy. This result is extended by Kapuscinski and Tayur (1998) for the

non-stationary system assuming periodic demand, where they also show that a modified base-

stock policy is optimal. Later, a line of research extends the focus to capture the uncertainty

in capacity, by analyzing a limited stochastic production capacity models (Ciarallo et al., 1994;

Güllü et al., 1997; Khang and Fujiwara, 2000; Iida, 2002). Here we point out the relevance of

Ciarallo et al. (1994) to our work. In the analysis of a single period problem, they show that

stochastic capacity does not affect the order policy. The myopic policy of newsvendor type is

optimal, meaning that the decision maker has no incentive to ask for the quantity higher than

that of the uncapacitated case. For the finite horizon stationary inventory model they show

that the optimal policy remains to be a base stock policy, where the optimal base stock level

is increased to account for the possible, however uncertain, capacity shortfalls in the future

periods. Our ACI inventory model builds on these models assuming both demand and capacity

are non-stationary and stochastic. The extension we are proposing is that by using ACI we

can lower the supply capacity uncertainty and better align the optimal policy parameters with

revealed supply capacity realizations in near future periods. To our knowledge the proposed

way of modeling inventory system with ACI has not yet received any attention in the research

community.

The complexity of a capacitated stochastic non-stationary inventory problem presents a too

hard challenge in terms of obtaining analytical solution for the parameters of the optimal pol-

icy, mainly a period-to-period optimal base stock level. The researchers resorted to developing

applicable heuristics (Bollapragada and Morton, 1999; Metters, 1997, 1998). In a non-stationary

stochastic setting, the models are capturing both the effect of deterministic anticipation (antic-

ipating mismatches in demand and capacity, and reacting by building up the inventory), as

well as the effect of uncertainty in demand. Again, we note that there is a lack of literature on

approximate analysis of inventory systems, which assume uncertain capacity as well.

We propose that an effective way of circumventing the uncertainty of supply capacity is by

obtaining ACI. This logic can also be targeted at the demand side, and is dealt by the already

well established advance demand information (ADI) research stream (Gallego and Özer, 2001;

Karaesmen et al., 2003; Wijngaard, 2004; Tan et al., 2007). Usually it is assumed that the future

uncertainty can be reduced due to some customers that place their orders in advance of their

needs. This forms the stream of early demand that does not have to be satisfied immediately.

Since this demands is revealed beforehand through ADI, we can use ADI to make better ordering

decisions. For the capacitated inventory model with ADI, Özer and Wei (2004) show that the

base stock policy is optimal, where the optimal base stock level is an increasing function of the
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size of ADI. In terms of modeling, our approach resembles ADI modeling approach, therefore our

work also focuses on presenting the possible similarities and the relevant distinctions between

the two.

Our contributions in this study can be summarized as follows: (1) We develop a stochas-

tic inventory model, which through the use of ACI, potentially enables the decision maker to

improve the performance of the inventory control system, (2) we demonstrate useful structural

properties of the optimal policy, (3) we come up with the corresponding ADI inventory model

and comment on its characteristics in relationship to the proposed ACI model, (4) our compu-

tational results provide useful managerial insight into circumstances where ACI becomes most

beneficial.

The remainder of the paper is organized as follows. We present a model incorporating ACI and

its dynamic cost formulation in Section 2. The optimal policy and its properties are discussed

in Section 3, where we also look at the similarities between the ADI modeling and the analysis

of ACI model presented in this paper. In Section 4 we present the results of a numerical study

and point out additional managerial insights. Finally we summarize our findings and suggest

directions for future research in Section 5.

2. Model Formulation

In this section, we introduce the notation and our model. The model under consideration assumes

periodic-review, non-stationary stochastic demand, limited non-stationary stochastic supply

with zero supply lead time, finite planning horizon inventory control system. For the sake of

generality of the model, we discuss the case of a fixed nonnegative supply lead time in Section

2.1. However, the manager is able to obtain ACI on the available supply capacity for the orders

to be placed in the future and use it to make better ordering decisions. We introduce a parameter

n, which represents the length of the ACI horizon, that is, how far in advance the available

supply capacity information is revealed. We assume ACI qt+n is revealed at the start of period

t for the supply capacity that limits the order zt+n, that will be placed in period t + n. The

model assumes perfect ACI, which means that in period t the exact supply capacities limiting

the orders that will be placed in the current and the following n periods are known. The supply

capacities in the more distant periods, from t + n + 1 towards the end of planning horizon,

remain uncertain (Figure 2). This means that when placing the order zt in period t, we know

the capacity limit qt, and it is rational to order up to this limit only.

Assuming that unmet demand is fully backlogged, the goal is to find an optimal policy that

would minimize the relevant costs, that is inventory holding costs and backorder costs. We
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Figure 2 Advance capacity information.

assume zero fixed cost inventory system. The model presented is general due to the fact that

no assumptions are made with regards to the nature of demand and supply process. Both are

assumed to be stochastic and with known independent distributions in each time period. The

major notation is summarized in Table 1 and some is introduced when needed.

Table 1 Summary of Notation

T : number of periods in the finite planning horizon
L : constant nonnegative supply lead time, a multiple of review periods (L≥ 0);
n : advance capacity information, n≥ 0
h : inventory holding cost per unit per period
b : backorder cost per unit per period
α : discount factor (0≤ α≤ 1)
xt : inventory position at time t before ordering
yt : inventory position at time t after ordering
x̂t : starting net inventory at time t
zt : order size at time t
Dt : random variable denoting the demand in period t
dt : actual demand in period t
gt : probability density function of demand in period t
Gt : cumulative distribution function of demand in period t
Qt : random variable denoting the available supply capacity at time t
qt : actual available supply capacity at time t, for which ACI was revealed at time t−n
rt : probability density function of supply capacity in period t
Rt : cumulative distribution function of supply capacity in period t

We assume the following sequence of events. (1) At the start of the period t, the decision

maker reviews the current inventory position xt and ACI on the supply capacity limit qt+n, for

the order zt+n that is to be given in period t + n, is revealed. (2) The ordering decision zt is

made based on the available supply capacity qt, where zt ≤ qt, and correspondingly the inventory

position is raised to yt = xt + zt. (3) The order placed at period t−L is received. (4) At the end

of the period previously backordered demand and demand dt are observed and satisfied from
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on-hand inventory; unsatisfied demand is backordered. Inventory holding and backorder costs

are incurred based on the end-of-period net inventory.

To determine the optimal cost, we not only need to keep track of xt, but also the supply

capacity available for the current order qt, and the supply capacities available for future orders,

which constitute ACI. At the start of the period t, when the available supply capacity qt+n

is already revealed for period t + n, the vector of ACI consists of available supply capacities

potentially limiting the size of the orders in the future n periods, ~qt = (qt+1, qt+2, . . . , qt+n−1, qt+n).

The information on the current supply capacity qt obviously affects the cost, but need not be

included in the ACI vector, since, as we show in Section 3 and 3.1 in particular, only ACI for

future orders affects the structure and the parameters of the optimal policy. All together, the

state space is represented by an n+2 -dimensional vector (xt, qt, ~qt), where xt and ~qt are updated

at the start of period t+1 in the following manner

xt+1 = xt + zt− dt, (1)

~qt+1 = (qt+2, qt+3, . . . , qt+n+1).

Observe that in the case of n = 0, the supply capacity information affecting the current order

is revealed just prior to the moment when the order needs to be placed. In this specific setting

the state space is reduced to 2-dimensional, where we only need to track the changes in xt, and

place an order accordingly to the currently available supply capacity qt.

Our model excludes the situation where the order is placed not knowing to what extent it

will be fulfilled. In this case we are talking about the capacitated stochastic supply model with

no ACI, the model that has been introduced by Ciarallo et al. (1994). However, when assuming

n = 0 under the zero lead time setting (L = 0), we show that under this specific setting optimal

costs under both models are equivalent (Section 3.1).

The minimal discounted expected cost function, optimizing the cost over a finite planning

horizon T from time t onward and starting in the initial state (xt, qt, ~qt), can be written as:

ft(xt, qt, ~qt) = min
xt≤yt≤xt+qt

{Ct(yt)+

+


αEDt [ft+1(yt−Dt, qt+1, ~qt+1)]}, if T −n≤ t≤ T ,

αEDt,Qt+n+1
[ft+1(yt−Dt, qt+1, ~qt+1)]}, if 1≤ t≤ T −n− 1,

(2)

where Ct(yt) = h
∫ yt

0
(yt − dt)gt(dt)ddt + b

∫∞
yt

(dt − yt)gt(dt)ddt is the regular loss function, and

the ending condition is defined as fT+1(·)≡ 0.
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2.1. Supply lead time considerations

In this section we extend the zero supply lead time model to account for a more realistic situation

of positive supply lead time. Since each of the orders remains in the pipeline stock for L periods,

we can express the inventory position before ordering xt as the sum of net inventory and pipeline

stock,

xt = x̂t +
t−1∑

s=t−L

zs. (3)

Correspondingly, the inventory position after ordering is yt = xt + zt, where zt is limited by qt.

Note, that due to perfect ACI the inventory position yt at all times reflects the actual quantities

that will be delivered in the current and the following L periods.

Due to constant non-zero lead time the decision maker should protect the system against

lead time demand, DL
t =

t+L∑
s=t

Ds, which is demand realized in the time interval [t, t + L]. Since

the current order zt affects the net inventory at time t + L, and no later order does so, we

reassign the corresponding expected inventory-backorder cost Ct(yt) to period t, by the L-period

discount factor αL. The single period cost function Ct(yt) is again the regular loss function as

in (2), where this time the expectation is with respect to lead time demand DL
t . The form of

the optimal cost function remains as given in (2).

Here we should point out that the presented ACI model assumes that ACI reveals the supply

capacity availability for the current and n future orders, that will be delivered in periods t+L

to t+L+n. Meaning that when placing the order exact supply capacity realization is known. In

Jakšič (2008) we discuss the possible extension to the presented ACI model, where we assume

that supply information is received only after the order has been placed. In this case the order

has to be placed not knowing the available supply capacity, however, we observe advance supply

information for the order that is already given and is currently still in the pipeline. Advance

supply information indicates whether order will be filled fully or just partially before the actual

delivery, and thus enables the decision maker to react if necessary.

3. Analysis of the Optimal Policy

In this section, we first characterize the optimal policy, as a solution of the dynamic programming

formulation given in (2). We prove the optimality of a state-dependent modified base stock

policy and provide some properties of the optimal policy. For proofs of the following theorems,

see Appendix.
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Let Jt denote the cost-to-go function of period t defined as

Jt(yt, ~qt) =


Ct(yt)+αEDt [ft+1(yt−Dt, qt+1, ~qt+1)], if T −n≤ t≤ T ,

Ct(yt)+αEDt,Qt+n+1
[ft+1(yt−Dt, qt+1, ~qt+1)], if 1≤ t≤ T −n− 1,

and we rewrite the minimal expected cost function ft as

ft(xt, qt, ~qt) = minxt≤yt≤xt+qtJt(yt, ~qt), for 1≤ t≤ T .

We first show the essential convexity results that allow us to establish the optimal policy.

Note that the single period cost function Ct(y) is convex in y, since it is the usual newsvendor

cost function (Porteus, 2002).

Theorem 1. For any arbitrary value of the information horizon n and value of the ACI

vector ~q, the following holds for all t:

1. Jt(y, ~q) is convex in y,

2. ft(x,~q) is convex in x.

Based on convexity results, minimizing Jt is a convex optimization problem for any arbitrary

ACI horizon parameter n.

Theorem 2. Let ŷt(~qt) be the smallest minimizer of the function Jt(yt, ~qt). For any ~qt, the

following holds for all t:

1. The optimal ordering policy under ACI is a state-dependent modified base stock policy with

the optimal base stock level ŷt(~qt).

2. Under the optimal policy, the inventory position after ordering yt(xt, qt, ~qt) is given by

yt(xt, qt, ~qt) =


xt, ŷt(~qt)≤ xt,

ŷt(~qt), ŷt(~qt)− qt ≤ xt < ŷt(~qt),

xt + qt, xt < ŷt(~qt)− qt.

This modified base stock policy is characterized by a state-dependent optimal base stock

level ŷt(~qt), which determines the optimal level of the inventory position after ordering. The

optimal base stock level depends on the future supply availability, that is supply capacities

qt+1, qt+2, . . . , qt+n, given by ACI vector.
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It is important to note here that since the optimal base stock level is the smallest minimizer

of the cost-to-go function Jt(yt, ~qt), it does not depend on the supply capacity qt, as Jt is not

a function of qt. However the actual realization of yt is restricted by the supply capacity qt

available in period t.

Remark 1. The optimal base stock level ŷt(~qt) is independent of the available supply capacity

qt in period t.

The optimal policy can thus be interpreted in the following way: In the case that the inventory

position in the beginning of the period exceeds the optimal base stock level, the decision maker

should not place an order. However, if the inventory position is lower, he should raise the

inventory position up to the base stock level if there is enough supply capacity available; if not,

he should take advantage of the full supply capacity available for the current order.

In the following theorem we proceed with the characterization of the behavior of the base

stock level in relation to the size of ACI. Intuitively, we expect that when we are facing a possible

shortage in supply capacity in future periods, we tend towards increasing the base stock level.

With this we stimulate the inventory build-up to avoid possible backorders, which would be the

probable consequence of capacity shortage. Along the same line of thought, the base stock level

is decreasing with higher supply availability revealed by ACI. We confirm these intuitive results

in Part 3 of Theorem 3 and illustrate the optimal ordering policy in Figure 3.

Figure 3 Illustration of the optimal ordering policy

We define the first derivative of a function f(x, z) with respect to x as f ′(x, z). Also, observe

that ~q2 ≤ ~q1 holds if and only if each element of ~q1 is greater than or equal to the corresponding
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element of ~q2. Part 3 suggests that when ~q2 ≤ ~q1, the decision maker has to raise the base stock

level ŷt(~q2) over the one that was optimal in the initial setting, ŷt(~q1).

Theorem 3. For any ~q2 ≤ ~q1, the following holds for all t:

1. J ′t(y, ~q2)≤ J ′t(y, ~q1) for all y,

2. f ′t(x,~q2)≤ f ′t(x,~q+
1 ) for all x,

3. ŷt(~q2)≥ ŷt(~q1).

We proceed by giving some additional insights into monotone characteristics of the optimal

policy. We continue to focus on how the changes in ACI affect the optimal base stock level. In

the first case we want to assess whether the base stock level is affected more by the change in

supply capacity availability in one of the imminent periods, or is the change in the available

capacity in distant periods more significant. Let us define a unit vector ei with dimensions equal

to the dimensionality of the ACI vector (n-dimensional), where its ith component is 1. With

vector ei we can target a particular component of the ACI vector. What we want to know, is see,

how the optimal base stock level is affected by taking away η units of supply capacity in period

i from now, in comparison with doing the same thing, but one period further in the future. In

Part 1 of Theorem 4 we show that taking away a unit of supply capacity given by ACI in period

i, affects the optimal base stock level more than taking away a unit of supply capacity, which

is available in later periods, i + 1 and further. This again is in line with intuition. The closer

the capacity restriction is to the current period the more we need to take it into account when

setting the appropriate base stock level.

Theorem 4. The following holds for all t:

1. ŷt(~q− ηei)≥ ŷt(~q− ηei+1) for i=t+1,. . . ,t+n-1.

2. ŷt(~q− ηei)− ŷt(~q)≤ η for i=t+1,. . . ,t+n.

This observation leads us to think about what would be a sufficient response if we were to

face a capacity limit. What would be an appropriate change in the optimal base stock level? We

start with the base scenario in which the available supply capacity is given by initial ACI. Then

we impose a tighter capacity restriction in period t+ i, by lowering the supply capacity ~qt+i by

η units. We are interested in the sensitivity of the optimal base stock level to the change in the

capacity limit. In Part 2 of Theorem 4, we show that the change in the base stock level should

be lower than the change in the capacity limit, in absolute terms. In other words, each unit

decrease in available supply capacity revealed by ACI leads to lower or at most equal increase

in the optimal base stock level. There is a dampening effect present, and together with result of

Part 1 this implies that the exact ACI for distant future period becomes irrelevant to current
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ordering decision. This is an important result, suggesting there is no benefit in overextending

the ACI horizon n. This is desirable both in terms of having a reliable ACI in a practical setting,

as well in terms of reducing the complexity of determining the optimal parameters by operating

with small n.

3.1. Equivalence of the n = 0 model and the model with no ACI

To determine the value of ACI in Section 4, the performance comparison between our ACI

model and the model with no ACI is of interest to us. Model with no ACI assumes that supply

capacity is uncertain at the time the order is placed. However, our model assumes that for n = 0

the realization of supply capacity available for the current order is known to a decision maker

at the time when he places an order, while only future supply capacity availability remains

uncertain. Therefore there is a concern that comparing the performance of ACI model under

information horizon n with the special case of n = 0, will not give the full value of ACI. In this

Section we show that under the zero lead time situation in a special case of n = 0, the decision

maker is not better off in comparison with the case where he has no ACI available.

We proceed by rewriting optimal cost function formulation given in (2) for n = 0 and L = 0:

ft(xt, qt) = minxt≤yt≤xt+qt{Ct(yt)+αEDt,Qt+1
ft+1(yt−Dt, qt+1)}, for 1≤ t≤ T ,

where ft is now only a function of inventory position before ordering xt and the supply capacity

available for the current order qt.

In the no ACI case, the decision maker has to decide for the order size without knowing what

the available supply capacity for the current period will be. Inventory position after ordering

yt only gets updated after the order is actually received, where it can happen that the actual

delivery size is less than the order size due to the limited supply capacity. We can therefore

write yt as

yt = xt +min{zt, qt}.

This is different to yt as defined in our ACI model, which already reflects the actual delivery

size at the time the order is placed. The optimal cost function formulation for the model with

no ACI is given as

Ht(xt, zt) = min
xt≤yt

{EQtCt(yt− [zt−qt]+)+αEDt,QtHt+1(yt− [zt−qt]+−Dt)}, for 1≤ t≤ T . (4)
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Observe that the minimization is done for all possible ending inventory positions above the

starting inventory position. Since the updating of the inventory position happens before the

current period demand needs to be satisfied, it is intuitively clear that by knowing the supply

capacity information qt we cannot come up with a better ordering decision, thus optimal base

stock levels and the performance should be the same for both models. The no ACI model given

by (4) is a generalization of the model by Ciarallo et al. (1994), where they assume stationarity

of demand and capacity (although not stating explicitly that it is required), to cover the settings

with non-stationary demand and capacity also. We formalize the above considerations in the

following remark.

Remark 2. The ACI model given by (2) in the case when n = 0 and L = 0, and the model

with no ACI (4) are equivalent with respect to:

1. Optimal base stock level and

2. Optimal discounted expected cost.

We point out that having only qt, representing currently available supply capacity information,

does not help in making better ordering decisions (see also Remark 1). This means that in

a zero lead time setting we can choose the n = 0 scenario as the base case, since it directly

corresponds to the case where we do not have any supply capacity information at all. Based on

this observation the value of ACI is defined in (8). In a L > 0 setting, employing the information

about the available supply capacity for the current order actually improves the performance.

Because the order is delivered L periods later, it is beneficial to know to what extent the order

will be satisfied already when the order is placed. If the information is received after the order

is placed, we step across to ASI model we have mentioned in Section 2.1.

3.2. Link to ADI modeling

In this section we explore the possible similarities between the proposed ACI model and the

stream of ADI modeling we have mentioned in the literature review. This is done by constructing

the capacitated ADI model, where we want to derive the model structurally equivalent to the

our ACI model. If possible, deriving the ADI model with the same optimal base stock levels and

the optimal inventory cost, would be the best option. This would give additional insights into the

analysis of ACI models, as we would be able to directly implement the solutions and algorithms

already proposed in the ADI literature. We complement the formal model construction with an

explanation of the conceptual differences between the two models.

Our ADI model assumes that we have two customer types, ones that give their orders N

periods ahead, and the customers that order in a usual way, giving their orders for the current
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period. At the end of the period t, we record the unobserved part of demand dt and the observed

part of demand ot+N , for the future period t + N . Parameter N represents the length of the

information horizon over which ADI is available (perfect ADI is assumed). Since ADI for period

t + N gets collected through period t, it only gets revealed at the end of the period. Also, we

assume that there is a fixed supply capacity Qc limiting the size of the order in each period. The

idea behind the construction of the ADI model is that the capacity Qc available in each period

is used both to cover the observed part of demand and the unobserved part of demand. Since

the observed part of demand is modeled as a realization of a non-stationary random variable,

the remaining capacity is also a random variable. This suggest that we have a random capacity

available to satisfy the unobserved part of demand dt, which is conceptually similar to our

limited stochastic demand ACI inventory model.

To derive a formal ADI model description we start by writing xt given in (3) in a modified

form

x̃t = x̂t +
t−1∑

s=t−L

z̃s−
t+L∑
s=t

os, (5)

where x̃t and z̃s represent ADI counterparts to xt and zt. Observe that x̃t already accounts

for the observed part of the lead time demand. By ordering, we raise x̃t to the corresponding

modified inventory position after ordering ỹt, given as ỹt = x̃t + z̃t, where z̃t ≤Qc. Due to the

update of the inventory position with observed demand, ỹt only needs to cover the remaining,

unobserved part of demand. From (5), we can show that at the start of period t + 1, x̃t is

updated in the following manner

x̃t+1 = x̃t + z̃t− dt− ot+L+1.

Note that we only know ot+L+1 before an order is placed at the start of period t + 1, if ADI

horizon N extends beyond lead time (N ≥ L + 1). If N is shorter, the best we can do is to

update x̃t+1 with ot+N we have just collected before the beginning of period t+1. This leads to

a more trivial version of the model, where it is enough to track the updated modified inventory

position, thus the state space is only one-dimensional. For this case the classical results for

capacitated systems such as in Federgruen and Zipkin (1986a) apply. However, if ADI horizon

extends beyond lead time, we need to track the corresponding demand observations that will

affect future orders. These constitute ADI vector ~ot = (ot+L+1, . . . , ot+N−1) that gets updated at

the start of period t+1

~ot+1 = (ot+L+2, . . . , ot+N),
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by including the new information ot+N collected through period t and purging the oldest data

point ot+L+1, with which we update x̃t+1. The state space is described by an N −L -dimensional

vector (x̃t,~ot).

The minimal discounted expected cost function of the proposed ADI model, optimizing the

cost over a finite planning horizon T from time t onward and starting in the initial state (x̃t,~ot),

can be written as:

ft(x̃t,~ot) = min
x̃t≤ỹt≤x̃t+Qc

{Ct(ỹt)+

+


αEDt [ft+1(ỹt−Dt,~ot+1)]}, if T −N − 1≤ t≤ T ,

αEDt,Ot+N
[ft+1(ỹt−Dt,~ot+1)]}, if 1≤ t≤ T −N,

(6)

where fT+1(·)≡ 0.

Now that we have established the ADI model, we can write the formulations, which establish

the relationships between the ACI and ADI model dynamics. For the models to be equivalent

in their base stock levels we need to assume that ỹt = yt holds. This is intuitively clear, since

both need to cover the same lead time demand. Note that we assume the unobserved part of

lead time demand in ADI model is modeled in the same way as ACI model’s lead time demand

given Section 2.1.

By substituting the relevant ACI dynamics formulations (1) and (3), into the correspond-

ing ADI formulations, we show that ACI model’s xt and zt are related to their ADI model

counterparts x̃t and z̃t in a following way

xt = x̃t + ot+L,

zt = z̃t− ot+L.

By updating x̃t at the start of the period t, we already use some of the total capacity Qc to cover

the observed part of demand ot+L. Now we now only have the remaining capacity Qc− ot+L to

sufficiently raise yt to cover the unobserved part of lead time demand. This directly relates to

having finite capacity qt, which limits the extent to which we can raise yt, in ACI model. We

can write the following relationship

qt = Qc− ot+L. (7)

By comparing the above ADI model with our ACI model, we first derive the relationship

between the two information horizon parameters. Observe that ADI vector ~ot gives observed
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demands for N −L− 1 periods beyond the lead time, which will affect the size of the following

N −L− 1 orders. This corresponds to having ACI for future n periods given by the ACI vector

~qt. ACI and ADI information horizon parameters n and N are therefore related in the following

way

n = N −L− 1,

where we confirm that N ≥L+1 has to hold, since we assume n≥ 0.

A more important observation is made by substituting ADI dynamics formulations into (2).

Comparing the constructed new ADI dynamic programming formulation with the one proposed

by (6), shows the inconsistency at the lower bound over which the minimization is made. Instead

of looking for the optimal ỹt by minimizing the cost function over x̃t ≤ ỹt ≤ x̃t +Qc, minimization

is made over x̃t + ot+L ≤ ỹt ≤ x̃t +Qc. For a direct equivalence of the ACI model and the ADI

model to hold, we always have to be able to raise ỹt above x̃t + ot+L for all t. This means that

the available capacity Qc should be sufficient to cover at least the observed part of demand.

This ”negativity issue” also stems directly from (7), where for qt ≥ 0, Qc − ot+L ≥ 0 has to

hold. The fixed capacity therefore has to exceed all possible realizations of the observed part

of demand, Qc ≥ ot. Obviously this unrealistic assumption would only hold for large capacities,

Qc →∞, which due to (7) leads to qt →∞, and this suggests an uncapacitated system. In an

uncapacitated system we would be always able to raise the inventory position high enough to

account for the relevant demand realization. We are excluding the possibility that the available

capacity is not sufficient to cover the observed part of demand, which has to be allowed in a

general ADI model.

Based on these findings we conclude that there are restrictive, even unrealistic, assumptions

needed to guarantee a direct equivalence between the capacitated ADI model and the proposed

ACI model in terms of optimal base stock levels and optimal costs. However, many of the struc-

tural properties of ADI optimal policy hold also in the case of our ACI model. This observation

justifies the effort made in studying the ADI literature, as additional similarities could be found

between the structural properties and practical implications of the two lines of modeling. An

example of this is the fact that the ADI model given by (6) is a specific case of the model

introduced by Özer and Wei (2004). Our ADI model is a simplification, since we assume that

advance orders are only given N periods in advance, while they allow for additive increase in

ADI, by updating the advance orders in each period.
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4. Value of ACI

In this section we present the results of the numerical analysis, which was carried out to quantify

the value of ACI, and to gain insights into how the value of ACI changes as some of the system

parameters change. Numerical calculations were done by solving the dynamic programming

formulation given in (2). We limit ourselves to the zero lead-time case (L = 0), which effectively

reduces the complexity of numerical calculations, but still provides us with the major insights.

We (1) introduce the value of ACI as the measure of the relative cost decrease in case when

using ACI, over the case when no ACI is available, (2) construct the set of experiments with

different demand and capacity patterns. This enables us to describe the influence of average

capacity utilization and period-to-period mismatch between the demand and capacity pattern

on the inventory cost. At the same time we evaluate the value of ACI and explore the extent of

the benefits that can be gained by increasing ACI horizon. (3) Based on a particular demand

and capacity pattern we proceed with a more detailed analysis of the influence of the uncertainty

of period-to-period demand and capacity, and the changes in the cost structure on the value of

ACI.

To identify the value of ACI, we measure the magnitude of inventory cost reduction in the

cases where ACI is available for future orders. We define the relative value of ACI for n > 0,

%VACI , as the relative difference between the optimal expected cost of managing the system

where n = 0, and the system where we have an insight into future supply availability n > 0:

%VACI(n > 0) =
fn=0− fn>0

fn=0

. (8)

Based on findings in Section 3.1, summarized in Remark 2, we know that %VACI gives the

full value of ACI. Thus, measuring the full benefit of using ACI over the no ACI scenario in

which the decision maker is facing the uncertain deliveries by his supplier.

We also define the absolute change in the value of ACI, 4VACI . With this we measure the

extra benefit gained by extending the length of ACI horizon by one time period, from n to n+1:

4VACI(n+1) = fn− fn+1

We proceed with constructing a set of four experiments (experiments number 1-4) with dif-

ferent demand and capacity patterns. The remaining parameters are set at the fixed value of:

T = 8, α = 0.99, h = 1, b = 20, Normal demand and capacity both with a coefficient of variation
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(CV ) of 0.45. We give a graphical illustration of demand and supply capacity patterns, by plot-

ting the expected demand and expected supply capacity for each of the periods in Figures 4

and 5. The optimal inventory costs and the optimal base stock levels ŷ(n=0) for n = 0 setting

are presented in Table 2, where also the value of ACI, %VACI , and the absolute change in the

value of ACI, 4VACI , is given.

Figure 4 Expected demand and capacity pattern, and optimal base stock level ŷ(n=0) (a) Exp. 1 (b) Exp. 2.

Figure 5 Expected demand and capacity pattern, and optimal base stock level ŷ(n=0) (a) Exp. 3 (b) Exp. 4.

Let us first observe the differences in inventory cost between the proposed settings. In general

the inventory costs are higher if the supply capacity is highly utilized (experiment number

1, 2 and 4). However, although the average utilization1 in all three cases is 100%, there are

still considerable cost differences. These are mainly due to period-to-period mismatch between

demand and supply capacity pattern. In experiment number 1 presented in Figure 4 (a), which

represents a kind of of the ”worst case” scenario, we are first faced with multiple periods of high

demand and inadequate capacity. Therefore the extent of the backorders accumulated in these

1 Defined as the sum of average demands over the sum of average supply capacities over the whole planning
horizon.
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first periods is high, thus inventory costs are high. We see that the optimal policy instructs

that we raise the base stock levels in the beginning periods. By doing this, we aim to use as

much of the available capacity as possible. However, the probability to achieve these target

base stock levels is minor, thus we cannot avoid the backorders. If we reverse this setting in

experiment number 2 presented in Figure 4 (b), we can use the early excess capacity to build

up the necessary inventory to cope with the subsequent capacity shortage. This in turn greatly

reduces the cost. We gradually increase the base stock levels as we approach the over-utilized

periods. After the peak demand periods, towards the end of the planning horizon, the base

stock level drops to the myopic optimal level in the last period2. We can further confirm the

inventory build up insight by inspecting the experiment number 3 in Figure 5 (a), where we are

faced with two demand peaks in periods 4 and 7. To avoid the probable backorders in the two

critical and the following periods, the rational thing to do is to pre-build the inventory.

Table 2 Optimal base stock level ŷ(n=0), optimal system cost, and the value of ACI

Exp. t 1 2 3 4 5 6 7 8 n Cost %VACI 4VACI

1 E[Dt] 6 6 6 6 6 6 6 6 0 1108.0
E[Qt] 3 3 3 3 9 9 9 9 1 1107.6 0.04 0.43
ŷ(n=0) 25 21 17 14 13 13 11 10 2 1107.6 0.04 0.02

3 1107.6 0.04 0.00
4 1107.6 0.04 0.00

2 E[Dt] 6 6 6 6 6 6 6 6 0 279.1
E[Qt] 9 9 9 9 3 3 3 3 1 278.3 0.28 0.78
ŷ(n=0) 22 24 25 26 22 18 15 10 2 277.6 0.53 0.70

3 277.2 0.67 0.40
4 277.0 0.74 0.20

3 E[Dt] 3 3 3 12 3 3 12 3 0 78.8
E[Qt] 9 9 9 9 9 9 9 9 1 70.6 10.37 8.16
ŷ(n=0) 7 12 17 20 11 16 19 5 2 66.7 15.36 3.93

3 65.7 16.62 0.99
4 65.4 17.00 0.30

4 E[Dt] 6 6 6 6 6 6 6 6 0 477.4
E[Qt] 6 6 6 6 6 6 6 6 1 476.6 0.16 0.78
ŷ(n=0) 22 21 20 18 17 15 13 10 2 476.2 0.25 0.41

3 476.0 0.28 0.15
4 476.0 0.29 0.04

We have recognized the potential settings, where anticipation of supply capacity to demand

mismatches, can bring considerable cost reductions. We summarize these conclusions and can

give the following conditions that should be fulfilled for anticipation to bring the considerable

2 In period T, at the end of the planning horizon, the myopic and the optimal solution converge. Since this is the
last period, the myopic optimization is optimal as Ciarallo et al. (1994) show for the capacitated single period
problem.
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benefits to a decision maker: (1) When there is a mismatch between the demand and supply

capacity, meaning that there are time periods when the supply capacity is highly utilized or

even over-utilized, but there are also periods when capacity utilization is low. (2) When we

can anticipate the possible mismatch in the future, for which we should have some data on the

demand and supply capacity probability distributions. (3) When there is enough time and/or

excess capacity to build up the inventory to a desired level to avoid backorder accumulation

during the capacity shortage.

The relevance of anticipating the future capacity shortages is well established already in a

deterministic analysis of the non-stationary capacitated inventory systems. Also in a stochastic

variant of this problem, that we are considering, some anticipation is possible through knowing

the probability distributions for demand and supply capacity in future periods. In the case of

experiment number 4 presented in Figure 5 (b) we are facing a stationary situation, where there

is no ”deterministic” anticipation. However, knowing that future demand and supply capacity

realizations may deviate from their expected values, we raise the base stock levels to account

for these uncertainties. In this paper we argue that we can further improve on this anticipative

build up by using ACI, and by this we can attain the cost savings.

Looking at the results of Table 2, we now put attention on the cost reductions that can be

achieved by using ACI. We see that ACI makes the inventory cost reduction possible, however

only in certain cases, while in other the benefits are almost nonexistent. If there is no pre-build

opportunity (experiment number 1) we see that the value of ACI is close to 0, no matter what

the length of the ACI horizon is. In the case of experiment number 3 we see that by having an

insight into next period’s available capacity, we can lower the inventory cost by 10.37%, while

an additional period of ACI data gives an additional 4.99% cost reduction. However, prolonging

the ACI horizon further does not improve the performance greatly. Obviously additional infor-

mation on future supply conditions can only help in making more effective ordering decisions,

therefore we see that %VACI increases with the length of the information horizon n. Observe

also that 4VACI gets lower, when we increase n. This makes sense intuitively, since knowing the

realizations of supply capacity in the near future periods has a higher effect on cost reduction

then information on supply limitations in more distant time periods.

We proceed by a close inspection of the influence of the cost structure and the variability

of both the demand and supply capacity on the value of ACI. The base scenario is charac-

terized by the following parameters: T = 6, α = 0.99, h = 1, discrete uniform distribution is

used to model demand and supply capacity, where the expected demand is given as E[D]1..8 =

(3,3,3,3,3,9,3,3) and the expected supply capacity as E[Q]
1..8

= (6,6,6,6,6,6,6,6). We vary:
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Figure 6 Expected demand and capacity pattern for Exp. 5-13.

(1) The cost structure, by changing the backorder cost b = (1,20,100) and keeping the inven-

tory holding cost constant at h = 1, and (2) the coefficient of variation of demand CVD =

(0,0.25,0.45,0.65) and supply capacity CVQ = (0,0.25,0.45,0.65), where the CVs do not change

through time3. The expected demand and supply capacity pattern is presented in Figure 6, and

the optimum costs in Table 3.

We see that we have one demand peak in period 6 and five pre-build periods (periods 1-5)

we can use to accumulate inventory. Since system’s average utilization is 63%, and the peak

demand period only occurs after five periods of low demand, both primary conditions, which

allow us the build up of inventory, are met: pre-build time and excess capacity. Looking first at

the inventory cost, we clearly see that the more volatile the system is (the higher the CVD and

CVQ are), the worse is the system performance. Changing the cost structure by increasing the

backorder cost obviously also increases the inventory cost. When we look at the effect of ACI

on inventory costs, we see that the costs can be substantially decreased, even up to almost 70%

(experiment number 6). Note again that extending n leads to higher cost savings, but 4VACI

is diminishing.

With higher backorder cost there is more potential to decrease the overall cost, but only if

we are successful with the inventory build up. Observe this by looking at the value of ACI with

regards to b, when we increase CVQ from experiment number 6 to 8. While in general 4VACI

is higher when b is increased, this is not the case with %VACI . The highest relative cost savings

occur for b = 100 in experiment number 6, but the opposite is true in experiment number 8.

This is due to the fact that when b is high, preventing backorders from occurring is of most

importance and this may require a long pre-build phase. In our case there is limited opportunity

to accumulate inventory in the first five periods, particularly when we are faced with highly

variable supply capacity and demand, therefore the savings through ACI are relatively lower.

3 Since it is not possible to come up with the exact same CVs for discrete uniform distributions with different
means, we give the approximate average CVs for demand and supply capacity distributions with means E[D]1..8

and E[Q]1..8.



22

Table 3 Optimal system cost and the value of ACI under varying ACI horizon n

b 1 20 100 1 20 100 1 20 100

Exp. CVD CVQ n Cost %VACI 4VACI

5 0 0 all n 2.85 2.88 2.88 0.00 0.00 0.00 0.00 0.00 0.00

6 0 0.25 0 3.23 9.44 11.51
1 2.99 5.77 6.40 7.47 38.95 44.39 0.24 3.68 5.11
2 2.98 4.15 4.23 7.74 56.08 63.27 0.01 1.62 2.18
3 2.97 3.82 3.82 7.97 59.56 66.80 0.01 0.33 0.41
4 2.97 3.79 3.79 8.00 59.90 67.11 0.00 0.03 0.04

7 0 0.45 0 5.58 28.88 59.22
1 4.60 20.21 48.08 17.48 30.03 18.81 0.98 8.67 11.14
2 4.57 15.34 40.33 18.09 46.88 31.90 0.03 4.87 7.75
3 4.46 12.93 36.39 20.14 55.21 38.56 0.11 2.41 3.94
4 4.45 11.97 34.87 20.31 58.57 41.11 0.01 0.97 1.51

8 0 0.65 0 11.15 77.84 248.87
1 8.95 66.12 237.45 19.75 15.06 4.59 2.20 11.72 11.42
2 8.83 58.62 227.39 20.80 24.69 8.63 0.12 7.50 10.06
3 8.58 54.10 220.59 23.00 30.50 11.36 0.25 4.53 6.80
4 8.56 51.84 217.10 23.25 33.41 12.77 0.03 2.26 3.49

9 0.25 0.45 0 10.17 41.28 86.60
1 9.47 35.19 78.13 6.94 14.76 9.78 0.71 6.09 8.47
2 9.34 32.04 72.53 8.21 22.39 16.24 0.13 3.15 5.60
3 9.30 30.51 69.77 8.63 26.08 19.43 0.04 1.52 2.76
4 9.29 29.94 68.69 8.73 27.46 20.68 0.01 0.57 1.08

10 0.45 0.45 0 15.27 61.50 139.65
1 14.75 56.89 133.95 3.37 7.50 4.08 0.51 4.61 5.69
2 14.65 54.33 130.49 4.07 11.66 6.55 0.11 2.55 3.46
3 14.62 53.02 128.29 4.24 13.79 8.13 0.03 1.31 2.21
4 14.61 52.50 127.31 4.28 14.63 8.83 0.01 0.52 0.97

11 0.65 0.45 0 21.16 87.57 224.55
1 20.73 84.22 221.12 2.02 3.82 1.53 0.43 3.35 3.43
2 20.63 82.18 219.22 2.47 6.16 2.37 0.10 2.04 1.90
3 20.61 81.05 217.90 2.57 7.44 2.96 0.02 1.13 1.32
4 20.61 80.59 217.20 2.60 7.98 3.27 0.00 0.46 0.70

12 0.25 0.25 0 8.02 22.05 28.98
1 7.90 20.28 25.55 1.47 8.06 11.87 0.12 1.78 3.44
2 7.86 19.20 23.38 2.02 12.96 19.34 0.04 1.08 2.17
3 7.85 18.84 22.28 2.09 14.58 23.12 0.01 0.36 1.10
4 7.85 18.78 21.96 2.10 14.86 24.22 0.00 0.06 0.32

13 0.65 0.65 0 24.33 135.97 455.85
1 23.53 131.15 450.80 3.28 3.55 1.11 0.80 4.83 5.06
2 23.29 127.94 447.64 4.26 5.91 1.80 0.24 3.21 3.15
3 23.22 126.15 445.45 4.56 7.22 2.28 0.07 1.79 2.20
4 23.20 125.37 444.33 4.63 7.80 2.53 0.02 0.78 1.11

In experiments number 6, 7 and 8, where deterministic demand is assumed, we observe that

4VACI is higher with increasing supply capacity variability. In the case of high CVQ, we account

for the uncertainty of supply capacity by increasing the base stock levels. This leads to too high
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inventory levels when actual supply capacity realizations are above expected, and to inventory

stockouts in the opposite case. However, through ACI, the decision maker is warned beforehand

about the possible occurrence of these shortages/stockouts in the future and he can align the

base stock level more precisely, depending on the future capacity availability. If we look solely

at the effect of increasing demand uncertainty we observe just the opposite. This is clearly seen

when CVD increases both %VACI and 4VACI are decreasing, when looking through experiments

number 6, 9, 10 and 11. The latter is intuitively clear, since the benefits of a more precise

alignment of the base stock level, possible due to revealed ACI, are greatly diminished because

the volatile demand causes the inventory position to deviate from the planned level.

To summarize, we have noted that increase in both CVD and CVQ leads to higher inventory

costs. However, as we have shown, these cost can be significantly decreased by using ACI. We

can give a general remark by saying the more chaos there is in supply, the better it is to have

some partial (preferably exact) information about the future. The decision maker facing low

demand uncertainty on one side, while struggling with high capacity uncertainty on the other,

can therefore gain the most from using ACI.

5. Conclusion

In this paper, we have developed a model that incorporates ACI into inventory decision making

and explored its effect on making effective ordering decisions within a periodic review inven-

tory planning system facing limited stochastic supply. Based on the proofs that establish the

convexity of the relevant cost functions, we are able to show the form of the optimal policy to

be a modified base stock policy with a single state-dependent base stock level. Essentially the

base stock level depends on realizations of future supply capacities revealed by ACI, and is a

decreasing function of the ACI size. We complement this result by showing additional monotone

properties of the optimal policy. Another contribution of this work is in establishing a link to

advance demand information modelling by derivation of the capacitated ADI model. We show

that under certain restrictive assumptions the models are equivalent in their structure. Through

this we suggest that there is an interesting overlap between the two research fields.

By means of numerical analysis we develop some additional managerial insights. In particular,

we give the following conditions when inventory costs can be decreased through the use ACI:

(1) when there is a mismatch between demand and supply capacity, which can be anticipated

through ACI, and there exists an opportunity to pre-build inventory in an adequate manner, (2)

when uncertainty in future supply capacity is high and ACI is used to lower it effectively, and (3)

in the case of high backorder costs, which further emphasizes the importance of avoiding stock
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outs. Under such circumstances, the companies should pursue establishing long-term contrac-

tual agreements, which would encourage ACI sharing. Such relations would bring considerable

operational cost savings.

We plan some extensions to the model presented in this paper in our future research. While

the proposed model assumes perfect ACI, we want to extend the model to describe the situation

where the communicated supply limit might not be completely accurate. This information can

be denoted as imperfect ACI. The consequence of ACI not being exact is that there is still

some uncertainty in the actual supply capacity availability. This leads to a situation where the

inventory position does not reflect the actual realizations of the orders in the pipeline and antic-

ipating the future supply conditions is harder due to the remaining share of the uncertainty.

The next step will be a further modification in this direction, where imperfect advance supply

information is updated from period to period in a manner in which the accuracy of the informa-

tion is increased (the variance of the underlying probability distribution is decreased). Finally,

we plan to study the model where ACI would be given over an information horizon of uncertain

length. This would correspond to the situation where the supplier communicates ACI to the

customer, but it does not specify how long the information will be valid. It might hold for many

periods, but it can also change unexpectedly. Another possible extension is complementing ACI

with possibility of capacity reservations. The customer would assess whether the future supply

capacity availability is adequate based on the available ACI, if not, he could take advantage of

reserving a certain share of the supplier’s capacity in advance and incurring some additional

cost of reservation.

Appendix

Preliminaries for Theorem 1

Lemma 1. Let x∈Rn, b∈Rm, A∈Rm×n and e∈Rs. Assume that g(x, e) is convex in x and

e. Then the function f(b, e) := minAx≤b g(x, e) : Rn →R is also convex in b and e.

Proof: Let 0≤ θ≤ 1. Then

θf(b, e)+ (1− θ)f(b̄, ē) = θ min
Ax≤b

g(x, e)+ (1− θ) min
Ax≤x

g(x, ē)

= θg(x∗0, e)+ (1− θ)g(x∗1, ē)

≥ g(θ(x∗0, e)+ (1− θ)(x∗1, ē)) (9)

≥ min
Ax≤θb+(1−θ)b̄

g(x, θe+(1− θ)ē) (10)

= f(θ(b, e)+ (1− θ)(b̄, ē))
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(9) is due to convexity of g and (10) is because Ax∗0 ≤ b and Ax∗1 ≤ b̄ implies that A(θx∗0 + (1−

θ)x∗1)≤ θb+(1− θ)b̄. �

Lemma 2. If J(y, e) is convex then f(x, q, e) = minx≤y≤x+q J(y, e) is also convex.

Proof: Let h(b, e) := minAy≤b J(y, e) where A = [−1,1] and b = [−x,x + q]. By Lemma 1, we

conclude that h(b, e) is convex. Since h(b, e) = f(x, q, e), f is also convex. �

Proof of Theorem 1: The theorem can be proven by regular inductive arguments and the

results of Lemmas 1 and 2. �

Proof of Theorem 2: Convexity results of Theorem 1 directly imply the proposed structure

of the optimal policy. �

Lemma 3. Let f(x) and g(x) be convex, and xf and xg be their smallest minimizers. If

f ′(x)≤ g′(x) for all x, then xf ≥ xg.

Proof: Assume for a contradiction that xf < xg, then f ′(xg−1)≥ 0. This is due to xf < xg and is

equal to 0 in the extreme case xg = xf +1. Also from f ′(x)≤ g′(x) we have f ′(xg−1)≤ g′(xg−1).

We have g′(xg − 1)≥ 0, which contradicts the definition of xg being smallest minimizer of g(·).

Hence xf ≥ xg. �

Proof of Remark 1: The result directly follows from the results of Theorem 2. �

Proof of Theorem 3: Using the induction argument we first observe that J ′t(y, ~q2)≤ J ′t(y, ~q1)

holds for t = T since J ′T (y, ~q) = C ′
T (yt). Assuming that it also holds for t we have ŷt(~q2)≥ ŷt(~q1)

by using Lemma 3. To prove that this implies f ′t(x,~q2)≤ f ′t(x,~q1) for t, we first write the optimal

cost function ft(x,~q) using the definition given in (2) and following the results of Theorem 2, as

ft(x, q, ~q) =


Jt(x,~q), ŷt(~q)≤ x,

Jt(ŷt(~q), ~q), ŷt(~q)− q≤ x < ŷt(~q),

Jt(x+ q, ~q), x < ŷt(~q)− q,

(11)

where q denotes available supply capacity for the current order. Observe also that we later use

ft(x,~q) = EQft(x, q, ~q), unless noted otherwise. From this, the definition of the first difference

and the convexity of Jt proven in Theorem 1, we can write f ′t(x,~q) in the following manner

f ′t(x, q, ~q) =


≥ 0, ŷt(~q)≤ x,

= 0, ŷt(~q)− q≤ x < ŷt(~q),

< 0, x < ŷt(~q)− q.

(12)
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Further analysis considers all possible inventory positions before ordering xt with regards to

both optimal base stock levels ŷt(~q1) and ŷt(~q2); and available supply capacity for the current

order, denoted as q1 and q2. Out of the possible nine cases in total, we can eliminate four cases

due to the two conditions: ŷt(~q2)≥ ŷt(~q1) and q1 ≤ q2. Thus we only need to closely analyze the

remaining five cases, showing that f ′t(x,~q2)≤ f ′t(x,~q1) holds.

Case 1: If (x≥ ŷt(~q2))∧(x≥ ŷt(~q1)), which holds on the interval x≥ ŷt(~q2) for any combination

q1 ≤ q2, then f ′t(x,~q1) = J ′t(x,~q1) and f ′t(x,~q2) = J ′t(x,~q2) from (11) and since Part 1 states

J ′t(y, ~q2)≤ J ′t(y, ~q1), we have f ′t(x,~q2)≤ f ′t(x,~q1).

Case 2: If (ŷt(~q2)− q2 ≤ x < ŷt(~q2)) ∧ (x≥ ŷt(~q1)) or equivalently ŷt(~q2)− q2 ≤ x < ŷt(~q2) for

q1 ≤ q2 ≤ ŷt(~q2)− ŷt(~q1), then f ′t(x,~q1)≥ 0 and f ′t(x,~q2) = 0 from (12), thus f ′t(x,~q2)≤ f ′t(x,~q1).

Case 3: If (x < ŷt(~q2)− q2)∧ (x≥ ŷt(~q1)) or equivalently ŷt(~q1)≤ x < ŷt(~q2)− q2 for q1 ≤ q2 ≤

ŷt(~q2)− ŷt(~q1), then f ′t(x,~q1)≥ 0 and f ′t(x,~q2) < 0 from (11), thus f ′t(x,~q2)≤ f ′t(x,~q1).

Case 4: If (ŷt(~q2)− q2 ≤ x < ŷt(~q2)) ∧ (ŷt(~q1)− q1 ≤ x < ŷt(~q1)), which holds on ŷt(~q2)− q2 ≤

x < ŷt(~q1) for q2 > ŷt(~q2)− ŷt(~q1) and any q1 ≤ q2, then f ′t(x,~q1) = 0 and f ′t(x,~q2) = 0 from (11),

thus f ′t(x,~q2)≤ f ′t(x,~q1).

Case 5: If (x < ŷt(~q2) − q2) ∧ (ŷt(~q1) − q1 ≤ x < ŷt(~q1)), which holds on ŷt(~q1) − q1 ≤ x <

ŷt(~q2)− q2 for q2 > ŷt(~q2)− ŷt(~q1) and any q1 ≤ q2, then f ′t(x,~q1) = 0 and f ′t(x,~q2) < 0 from (11),

thus f ′t(x,~q2)≤ f ′t(x,~q1).

Going from t to t − 1 we conclude the induction argument by showing that f ′t(x,~q2) ≤

f ′t(x,~q1) implies J ′t−1(y, ~q2) ≤ J ′t−1(y, ~q1). Using the definition we write J ′t−1(y, ~q2) = C ′
t−1(y) +

αEDt−1,Qt+n
ft(x2, q2, ~q2), where going backwards x2 is updated from y and order size zt is limited

by the available supply capacity given by q2. Taking into account that we have condition ~q2 ≤ ~q1

at t−1, this implies q2 ≤ q1 at t, and we can conclude that x2 ≤ x1 has to hold. Thus, f ′t(x2, ~q2)≤

f ′t(x1, ~q2) also holds directly from convexity and we can write C ′
t−1(y)+αEDt−1,Qt+n

ft(x2, ~q2)≤

C ′
t−1(y) + αEDt−1,Qt+n

ft(x1, ~q2) ≤ C ′
t−1(y) + αEDt−1,Qt+n

ft(x1, ~q1) = J ′t−1(y, ~q1), where the sec-

ond inequality is due to induction argument f ′t(x,~q2) ≤ f ′t(x,~q1). With this we have shown

J ′t−1(y, ~q2)≤ J ′t−1(y, ~q1) holds and the proof is completed. �

Lemma 4. For any ~q and η > 0 and all t, we have:

1. J ′t(x− η, ~q)≤ J ′t(x,~q− ηe1),

2. ŷt(~q− ηe1)− ŷt(~q)≤ η,

3. f ′t(x− η, ~q)≤ f ′t(x,~q− ηe1).

Proof: For all x and t,

J ′t(x− η, ~q) = C ′
t(x− η)+αEDt,Qt+n+1

f ′t+1(x− η−Dt, qt+1, ~qt+1)
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≤ C ′
t(x)+αEDt,Qt+n+1

f ′t+1(x− η−Dt, qt+1, ~qt+1)

= J ′t(x,~q− ηe1). (13)

The inequality is due to convexity of Ct(x) and this proves Part 1 assuming f ′t(x − η, ~q) ≤

f ′t(x,~q−ηe1) holds. Notice that the smallest minimizer of J ′t(x−η, ~q) is ŷt(~q)+η. This together

with Lemma 3 implies ŷt(~q − ηe1) ≤ ŷt(~q) + η, which proves Part 2. We continue to prove

f ′t(x−η, ~q)≤ f ′t(x,~q−ηe1) for all x and t. To do so, we use (14) and (12), and consider 9 possible

cases:

Case 1: If ŷt(~q)≤ x− η and ŷt(~q− ηe1)≤ x then f ′t(x− η, ~q) = J ′t(x− η, ~q)≤ J ′t(x,~q− ηe1) =

f ′t(x,~q− ηe1). The inequality follows from (13).

Case 2: If ŷt(~q)≤ x− η and ŷt(~q− ηe1)− q ≤ x < ŷt(~q− ηe1) is not possible since x < ŷt(~q−

ηe1)≤ ŷt(~q)+ η.

Case 3: If ŷt(~q) ≤ x− η and x < ŷt(~q − ηe1)− q is not possible since x < ŷt(~q − ηe1)− q ≤

ŷt(~q)+ η− q.

Case 4: If ŷt(~q)− q≤ x− η < ŷt(~q) and ŷt(~q− ηe1)≤ x then f ′t(x− η, ~q) = 0≤ f ′t(x,~q− ηe1).

Case 5: If ŷt(~q)− q≤ x− η < ŷt(~q) and ŷt(~q− ηe1)− q≤ x < ŷt(~q− ηe1) then f ′t(x− η, ~q) = 0 =

f ′t(x,~q− ηe1).

Case 6: If ŷt(~q)− q ≤ x− η < ŷt(~q) and x < ŷt(~q − ηe1)− q is not possible since x < ŷt(~q −

ηe1)− q≤ ŷt(~q)+ η− q.

Case 7: If x− η < ŷt(~q)− q and ŷt(~q− ηe1)≤ x then f ′t(x− η, ~q) < 0≤ f ′t(x,~q− ηe1).

Case 8: If x − η < ŷt(~q) − q and ŷt(~q − ηe1) − q ≤ x < ŷt(~q − ηe1) then f ′t(x − η, ~q) < 0 =

f ′t(x,~q− ηe1).

Case 9: If x − η < ŷt(~q) − q and x < ŷt(~q − ηe1) − q then f ′t(x − η, ~q) = J ′t(x − η + q, ~q) ≤

J ′t(x + q, ~q− ηe1) = f ′t(x,~q− ηe1). The inequality follows from (13). With this we conclude the

proof of Part 3. �

Proof of Theorem 4: Part 3 of Lemma 4 implies that J ′t(y, ~q − ηe1) = C ′
t(y) +

αEDt,Qt+n+1
f ′t+1(y − η − Dt, qt+1, ~qt+1) ≤ C ′

t(y) + αEDt,Qt+n+1
f ′t+1(y − Dt, qt+1, ~qt+1 − ηe1) =

J ′t(y, ~q− ηe2) for all t. Hence for all t,

J ′t(y, ~q− ηei)≤ J ′t(y, ~q− ηei+1) (14)

is true for i = 1. Now assume for an induction argument that (14) is true for i, then Part 1 for

i follows from Lemma 3. Next, we show that Part 1 for i and the induction argument imply

f ′t(x,~q− ηei)≤ f ′t(x,~q− ηei+1). To do so, we use (11) and consider 3 cases:
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Case 1: If x≥ ŷt(~q− ηei+1), then f ′t(x,~q− ηei+1) = J ′t(x,~q− ηei+1)≥ J ′t(x,~q− ηei) = f ′t(x,~q−

ηei), where the inequality is due to (14).

Case 2: If ŷt(~q− ηei+1)− q ≤ x < ŷt(~q− ηei), then f ′t(x,~q− ηei+1)≥ 0. This is the case since

on the interval ŷt(~q − ηei+1) − q ≤ x < ŷt(~q − ηei+1) it holds f ′t(x,~q − ηei+1) = 0, however on

ŷt(~q − ηei+1) < x≤ ŷt(~q − ηei), f ′t(x,~q − ηei+1)≥ 0. Here ŷt(~q − ηei+1)≤ ŷt(~q − ηei) holds from

(14) and Lemma 3. For f ′t(x,~q − ηei) ≤ 0, due to f ′t(x,~q − ηei) = 0 on interval ŷt(~q − ηei) −

q ≤ x < ŷt(~q − ηei) and f ′t(x,~q − ηei) ≤ 0 on interval ŷt(~q − ηei+1) − q ≤ x < ŷt(~q − ηei) − q.

ŷt(~q− ηei+1)− q≤ ŷt(~q− ηei)− q also holds from (14) and Lemma 3.

Case 3: If x < ŷt(~q−ηei+1)−q, then f ′t(x,~q−ηei+1) = J ′t(x+q, ~q−ηei+1)≥ J ′t(x+q, ~q−ηei) =

f ′t(x,~q− ηei), where the inequality is due to (14).

From (2) and the cases above, we have J ′t(y, ~q − ηei+1) = C ′
t(y) + αEDt,Qt+n+1

f ′t+1(y −

Dt, qt+1, ~qt+1 − ηei) ≤ C ′
t(y) + αEDt,Qt+n+1

f ′t+1(y − Dt, qt+1, ~qt+1 − ηei+1) = J ′t(y, ~q − ηei). This

completes the induction argument and the proof of (14) and Part 1. �

The proof of Part 2 follows directly from Part 1 and Lemma 4 for i > 1 because ŷt(~q− ηei)−

ŷt(~q)≤ ŷt(~q− ηei−1)− ŷt(~q)≤ · · · ≤ ŷt(~q− ηe1)− ŷt(~q)≤ η. This proof was inspired by Özer and

Wei (2003). �

Proof of Remark 2: For the proof we refer the reader to Jakšič (2008).
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